A probabilistic strategy for understanding action selection.
نویسندگان
چکیده
Brain regions involved in transforming sensory signals into movement commands are the likely sites where decisions are formed. Once formed, a decision must be read out from the activity of populations of neurons to produce a choice of action. How this occurs remains unresolved. We recorded from four superior colliculus neurons simultaneously while monkeys performed a target selection task. We implemented three models to gain insight into the computational principles underlying population coding of action selection. We compared the population vector average (PVA)/optimal linear estimator (OLE) and winner-takes-all (WTA) models and a Bayesian model, maximum a posteriori estimate (MAP), to determine which predicted choices most often. The probabilistic model predicted more trials correctly than both the WTA and the PVA. The MAP model predicted 81.88%, whereas WTA predicted 71.11% and PVA/OLE predicted the least number of trials at 55.71 and 69.47%. Recovering MAP estimates using simulated, nonuniform priors that correlated with monkeys' choice performance, improved the accuracy of the model by 2.88%. A dynamic analysis revealed that the MAP estimate evolved over time and the posterior probability of the saccade choice reached a maximum at the time of the saccade. MAP estimates also scaled with choice performance accuracy. Although there was overlap in the prediction abilities of all the models, we conclude that movement choice from populations of neurons may be best understood by considering frameworks based on probability.
منابع مشابه
Integrated Commonsense Reasoning and Probabilistic Planning
Commonsense reasoning and probabilistic planning are two of the most important research areas in artificial intelligence. This paper focuses on Integrated commonsense Reasoning and probabilistic Planning (IRP) problems. On one hand, commonsense reasoning algorithms aim at drawing conclusions using structured knowledge that is typically provided in a declarative way. On the other hand, probabili...
متن کاملHybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010